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Abstract: Nonlinear mathematical models and their solutions attain much attention in soliton theory. In this paper, main focus 

is to find travelling wave solutions of foam drainage equation and NLEE of fourth order. (G'/G)-expansion method is applied on 

these nonlinear differential equations. Wave transformation is used to convert nonlinear partial differential equation into an 

ordinary differential equation. It is observed that (G'/G)-expansion method is advanced and easy tool for finding solution of 

NLEEs in engineering, optics and mathematical physics. The proposed method is highly effective and reliable. 
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1. Introduction 

In the last few years, we have observed an extraordinary 

progress in soliton theory. Solitons have been studied by 

various mathematician, physicists and engineers for their 

applications in physical phenomena’s. Firstly soliton waves 

are observed by an engineer John Scott Russell. Wide ranges 

of phenomena in mathematics and physics are modeled by 

differential equations. In nonlinear science it is of great 

importance and interest to explain physical models and attain 

analytical solutions. In the recent past large series of chemical, 

biological and physical singularities are feint by nonlinear 

partial differential equations. At present the prominent and 

valuable progress are made in the field of physical sciences. 

The great achievement is the development of various 

techniques to hunt for solitary wave solutions of differential 

equations. In nonlinear physical sciences, an essential 

contribution is of exact solutions because of this we can study 

physical behaviors and discus more features of the problem 

which give direction to more applications. 

A reliable technique presented by Wang et al which is 

known as (G'/G)-expansion method for the nonlinear 

evolution equations (NLEEs) and provides the exact traveling 

wave solutions. In this technique, a linear ordinary differential 

equation of second order ������ � ������ � ����� is used, 

as the auxiliary equation. (G´/G)-expansion method [1-16] 

applied to solve the various types of the nonlinear evolution 

equations. A new modification introduced by Zhao et al. [17] 

in (G´/G)-expansion method. Extended (G´/G)-expansion 

method for solving (2+1)-dimensional NLEEs latter on 

introduce by Zayad and Abdelaziz [18]. For NLEEs arising in 

engineering and mathematical physics, multiple 

(G´/G)-expansion method applied by Chen and Li [19] in the 

recent year. (G´/G)-expansion method applied by Wang et al. 

[20] to find the traveling wave solutions of the Broer-Kaup 

and the approximate long water wave equations. For obtaining 

the traveling wave solutions of NLEEs (G´/G)-expansion 

method used by Liu et al and Aslan and Oz
 is [21] to find out 

the exact solutions of NLEEs. In the purposed method the 

solutions are expressed in term of rational trigonometric, the 
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rational hyperbolic and rational functions. The proposed 

method is powerful tool and very user-friendly for solving 

NLEEs. On exact solution some novel results and 

computational methods involved to travelling-wave 

transformation, see the references, [22-30]. 

2. Analysis of	��′/��-Expansion Method 

The general form of nonlinear partial differential equation 

is 

����̅, �̅� , �̅�, �̅�, �̅�, �̅�� , �̅�� , �̅�� , �̅��, �̅�� , �̅�� , �̅�� , �̅�� , �̅��, �̅��, … � = 0.                    (1) 

Here ��  is a polynomial in 	����, �� . The steps of 

(G´/G)-expansion method are as follows: 

Step 1: Seek travelling wave variable of Eq. (1) by letting 

�̅��, �� = 	 �̅� �̅,  ̅ = !� � "# � $% � &�. 
and Eq. (1) transform into the ODE. 

'��̅, �̅ ′, �̅ ′′, �̅ ′′′, … � = 0.            (2) 

Here primes are representing the derivative of �̅  with 

respect to   ̅ and & denotes constant. 

Step 2: Constant (s) of integration can be obtained by 

integrating Eq. (2) term wise one or more times, if possible. 

For minimalism, the integration constant (s) can be set equal 

to zero. 

Step 3: According to the given proposed algorithm, suppose 

that the wave solution can be written as follows 

�̅� � = () � ∑ (+ ,-.
- /+0+12 .            (3) 

Where � is the solution of 1
st
 order nonlinear equation in 

the following form: 

��� � ��� � �� = 0.            (4) 

Where �  and �  are unknown constants. By using the 

general solution of Eq. (3), we get 

-.�3��-�3�� = 456789: ;<= >?+@A=6B567893�CD<6 <E>@A=6B567893�C
<= <E>@,=6456789/D<6 >?+@A=6B567893�C F − 5: , 	�: − 4� > 0.                  (5) 

= 4−�: � 4�2 ;−K2 LMN ,124−�: � 4� /̅ � K:KPL ,124−�: � 4� /̅
K2 KPL ,124−�: � 4� /̅ � K: LMN ,124−�: � 4� /̅ F − �2 , �: − 4� < 0. 

= 2K2K2 � K: ̅ − �2 , �: − 4� = 0. 
Where K2, K: are unknown constants and we have 

A��� ̅��� ̅� C
� = −RA��� C: � � A��� C � �S. 

A��� �̅�� �̅ C
�� = R2A��� CT � 3� A��� C: � ��: � 2��A��� C � �VS. 

⋮  

Where the primes represents the derivatives w.r.t  ̅. To find 

out �̅ explicitly, we follow these four steps. 

Step 4: Substituting Eq. (3) and (4) into Eq. (2) after that, 

collect all terms with the same order of �� ′/�� together, the 

left-hand side of Eq. (1) is converted into a polynomial in �� ′/��. Then by setting each coefficient equal to zero in this 

polynomial yields a set of algebraic equations for !, ", $, &, W 

and (+, N = 0,1, . . . , X. 
Step 5: Solve this system of algebraic equations obtained 

for !, ", $, &, W and	(+ , N =0,1, . . . , X by using MAPLE 18. 

Step 6: Use the results obtained from above steps to get a 

series of fundamental solutions �̅� �̅  of Eq. (2) that is 

depending on ,-′

-/. Since the solutions of Eq. (3) will be well 

known for us, and then we can get the exact solutions of Eq. 

(4). 

3. Numerical Applications 

We solve the following two problems to illustrate the 

implementation of the �� ′/�� expansion method. 

3.1. Foam Drainage Equation 

Consider the Foam drainage equation [8] 

YZY� � YY� [�: − 4Z: YZY�\ = 0.              (6) 

Here x and t scaled position and time coordinates, � 

represents the cross section of a channel formed at the point of 
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intersection of three films, mostly indicated as Plateau border 

(liquid filled channels). We focus on quantitative description 

of the coupling of drainage. Foam drainage is the flow of 

liquid from Plateau borders and the point where four channels 

meet between the bubbles, derived from capillarity and gravity. 

In foam stability foam drainage plays an important role. In fact, 

structure of the foam becomes fragile, when foam dries. [21] 

Using the transformation as � = ]� �̅,  ̅ = ^�� �&��,	where & and ^ are unknown constants, the given Eq. (6) 

is being transferred to 

^& Y_Y3 � ^ YY3 ,]: − :̀4] Y_Y3/ = 0.          (7) 

Integrating Eq. (7) once with respect to �  and setting 

integration constant equal to zero, we have 

^&] � ^ ,]: − :̀4] Y_Y3/ = 0.         (8) 

By substituting ]� �̅ = �:� ̅�, we have 

^&�: � ^ ,�8 − 2̂ �. 2���/ = 0. 

Or equivalently 

& � �: − ^�� = 0.               (9) 

By using the homogenous principle we balance the �� 
and	�:, we get 

X � 1 = 2X, 
X = 1. 

We assume equation Eq. (9) has the solution 

� = () � (2 ,a.
a / , (2 ≠ 0.           (10) 

Here () and (2 are unknown constants to be find out later. � = �� �̅	 satisfy the second order linear ordinary 

differential equation of the form 

�c� ̅� � VG�� �̅ � e�� ̅� = 0.            (11) 

V and e are constants, from Eq. (11), we have 

��� =

fg
ggg
gh
ggg
gg
i 4V: − 4e2 j

kl!2LMNℎ A4V: − 4e ̅2 C � !:KPLℎ A4V: − 4e ̅2 C
!2KPLℎ A4V: − 4e ̅2 C � !:LMNℎ A4V: − 4e ̅2 Cn

op− V2 , V: − 4e > 0.

44e − V:2 j
kl−!2LMNℎ A44e − V: ̅2 C � !:KPLℎ A44e − V: ̅2 C

!2KPLℎ A44e − V: ̅2 C � !:LMNℎ A44e − V: ̅2 C n
op− V2 , V: − 4e < 0.

	 2!2!2 � !: ̅ − V2 , V: 	− 4e = 0.

 

Putting Eq. (10) into Eq. (9) and by collecting all terms with 

the same order of ,-.
- /, we get a set of algebraic equations for &, () and (2 as follows 

AG�GC) :	ω � (): � (2Ve = 0, 
AG�GC2 :	2()(2 � (2V: = 0, 
AG�GC: :	(2: � (2V = 0. 

Constants &, ()  and (2  can be determined by using 

MAPLE 18, we have one solution set. 

() = − 2: V:, 	(2 = −V,& = − 28 V8 � V:e.      (12) 

By using values of the above constants in Eq. (10), we get 

� = −V ,a.
a / − 2: V:, & = − 28 V8 � V:e.      (13) 

Case I: When V: − 4e > 0.  

�2 = − s4s678t:
j
klu=>?+@;Bv6wxyz{6 FDu6<E>@;Bv6wxyz{6 F

u=<E>@;Bv6wxyz{6 FDu6>?+@;Bv6wxyz{6 Fn
op.  (14) 

Here k2 and k:are arbitrary constants. 

If !2 = 0,	then solution (14) can be simplified as 

�: = − s4s678t: KP�ℎ [4s678t3�: \.      (15) 

If !: = 0,	then solution (14) can be simplified as 

�T = − s4s678t: �(Nℎ [4s678t3�: \.      (16) 

Case II: When V: − 4e < 0. 
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�8 = − s48t7s6:
j
kl7u=>?+@;Bxywv6z{6 FDu6<E>@;Bxywv6z{6 F

u=<E>@;Bxywv6z{6 FDu6>?+@;Bxywv6z{6 F n
op. (17) 

If !2 � 0,	then solution (17) can be simplified as 

�} � G s48t7s6
: KP�m [48t7s63�

: \.         (18) 

If !: � 0,	then solution (17) can be simplified as 

�~ � s48t7s6
: �(Nm [48t7s63�

: \.         (19) 

Case III: When	V: G 4e � 0. 

�� � G :su=
u=Du63� .                 (20) 

Here in all the cases  ̅ � ^ ,� � ,G 2
8 V8 � V:e/ �/. 

 

Figure 1. Soliton solution of �2��, ��  for !2 � 1, !: � 1.5, ^ � 1, V �3, e � 1. 

 

Figure 2. Soliton solution of �2��, ��  for !2 � 1, !: � 2.5, ^ � 1.5, V �4, e � 2. 

 

Figure 3. Soliton solution of �:��, �� for ^ � 1, V � 3, e � 1. 

 

Figure 4. Soliton solution of �:��, �� for ^ � 2, V � 4, e � 2. 

 

Figure 5. Soliton solution of �T��, �� for ^ � 2, V � 4, e � 2. 
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Figure 6. Soliton solution of �T��, �� for ^ � 2.5, V � 3, e � 2. 

 

Figure 7. Soliton solution of �8��, ��  for !2 � 1, !: � 1.5, ^ � 2.5, V �3, e � 3. 

 

Figure 8. Soliton solution of �8��, ��  for !2 � 1.5, !: � 2, ^ � 3, V �2, e � 2. 

 

Figure 9. Soliton solution of �}��, �� for ^ � 3, V � 2, e � 2. 

 

Figure 10. Soliton solution of �}��, �� for ^ � 3.5, V � 3, e � 3. 

 

Figure 11. Soliton solution of �~��, �� for ^ � 3.5, V � 3, e � 3. 
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3.2. Nonlinear Fourth Order Evolution Equation  

Let us consider the NLEE of fourth order [13] 

��� G (������ � ������ � 0.            (21) 

Where ( and � are constants. Fourth order NLEE is one 

of good starting point for study of non-linear water waves that 

was first point out by Dysthe in 1979. He obtained for gravity 

waves propagating at the interface of two superposed fluids of 

infinite depth over water in the presence of air flowing and a 

basic current sheer.  

By using the transformation as  ̅ = � − &�,	we reduce the 

given Eq. (21) into an ODE 

&�c − (��c�: − ���?�� = 0.          (22) 

By putting � = �c, we have 

&� − (�: − ��c = 0.           (23) 

Balancing the �c  and �:  by using the homogenous 

principle, we get 

X � 2 = 2X, 
X = 2. 

Now, we suppose Eq. (23) has the solution 

� = () � (2 ,a.
a / � (: ,a.

a /: , (: ≠ 0.         (24) 

Here (), (2 and (: are constants to be find out later. � = �� �̅	 satisfy the second order linear ordinary 

differential equation in the following form 

�c� ̅� � VG�� �̅ � e�� ̅� = 0.       (25) 

V and e are constants, from Eq. (25), we get 

G�G =

fg
ggg
gh
ggg
gg
i 4V: − 4e2 j

kl!2LMNℎ A4V: − 4e ̅2 C � !:KPLℎ A4V: − 4e ̅2 C
!2KPLℎ A4V: − 4e ̅2 C � !:LMNℎ A4V: − 4e ̅2 Cn

op− V2 , V: − 4e > 0.

44e − V:2 j
kl−!2LMNℎ A44e − V: ̅2 C � !:KPLℎ A44e − V: ̅2 C

!2KPLℎ A44e − V: ̅2 C � !:LMNℎ A44e − V: ̅2 C n
op− V2 , V: − 4e < 0.

	 2!2!2 � !: ̅ − V2 , V: 	− 4e = 0.

 

By putting the Eq. (24) into eq. (23) and collecting all terms with the same order of ,-.
- / we yields a set of algebraic equations 

for &, (), (2and (: as follows 

AG�GC) :	ω() − ((): − �(2Ve − 2�(:e: = 0, 
AG�GC2 :	ω(2 − 2(()(2 − �(2V: − 2�(2e − 6�(:Ve = 0, 

AG�GC: :	ω(: − 2(()(: − ((2: − 3�(2V − 4�(:V: − 8�(:e = 0, 
AG�GCT :	− 	2((2(: − 2�(2 − 10�(:V = 0, 

AG�GC8 :	− ((:: − 6�(: = 0. 
Constants &, (), (2 and (: can be determined by using MAPLE 18, we have following two solution sets 

1
st
 Solution Set: 

(: = − ~�� , (2 = − ~�s� , () = − ~�t� , & = −4�e � �V:.                        (26) 

By substituting values of the above constants in Eq. (24), we have 
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� � G6�
( AG�

GC
:
G 6�V

( AG�
GC G 6�e

( . 
Case I: When V: − 4e > 0. 

�2 = −3� ,s678t:� /
j
klu=>?+@;Bv6wxyz{6 FDu6<E>@;Bv6wxyz{6 F

u=<E>@;Bv6wxyz{6 FDu6>?+@;Bv6wxyz{6 Fn
op

:
	− ~�t� .                    (27) 

�2 = −3� ,s678t:� /∬
j
klu=>?+@;Bv6wxyz{6 FDu6<E>@;Bv6wxyz{6 F

u=<E>@;Bv6wxyz{6 FDu6>?+@;Bv6wxyz{6 Fn
op

:
d ̅d ̅3�) − T�t3�6� .                 (28) 

Where k2 and k:are arbitrary constants. 

If !2 = 0,	then solution (27) and (28) can be expressed as 

�: = −3� ,s678t:� / KP�ℎ: [4s678t3�: \ − ~�t� .                             (29) 

�: = −3� ,s678t:� /∬ KP�ℎ: [4s678t3�: \� ̅d ̅ −3�) T�t3�6� .                           (30) 

If !: = 0,	then solution (27) and (28) can be expressed as 

�T = −3� ,s678t:� / �(Nℎ: [4s678t3��: \ − ~�t� .                             (31) 

�T = −3� ,s678t:� /∬ �(Nℎ: [4s678t3�: \ � d̅ ̅ −3�) T�t3�6� .                          (32) 

Case II: When V: − 4e < 0. 

�8 = −3� ,8t7s6:� /j
kl7u=>?+@;Bxywv6z{6 FDu6<E>@;Bxywv6z{6 F

u=<E>@;Bxywv6z{6 FDu6>?+@;Bxywv6z{6 F n
op	

:

− ~�t6
� .                      (33) 

�8 = −3� ,8t7s6:� /∬
j
klu=>?+@;Bxywv6z{6 FDu6<E>@;Bxywv6z{6 F

u=<E>@;Bxywv6z{6 FDu6>?+@;Bxywv6z{6 Fn
op

:
d ̅d 	{ − T�t3�6� .3�)                      (34) 

If !2 = 0,	then solution (33) and (34) can be simplified as 

�} = −3� ,8t7s6:� / KP�ℎ: [48t7s63�: \ − ~�t� .      (35) 

�} = −3� ,8t7s6:� /∬ KP�ℎ: [48t7s63�: \3�) 	d d̅ ̅ − T�t3�6� .  (36) 

If !: = 0,	then solution (33) and (34) can be simplified as 

�~ = −3� ,8t7s6:� / �(Nℎ: [48t7s63�: \ − ~�t� .     (37) 

�} = −3� ,8t7s6:� /∬ �(Nℎ: [48t7s63�: \3�) 	d ̅d ̅ − T�t3�6� .  (38) 

Case III: When V: − 4e = 0. 
�� = −24� u=6���=D�63��6 − ~�t� .           (39) 

�� = −24�∬ u=6���=D�63��6
3�) 	d d̅ ̅ − T�t3�6� .      (40) 

Here in all the cases  ̅ = � − �−4�e � �V:��. 
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2
nd

 Solution Set: 

() � G ��s6D:t�
� , 	(2 = − ~�s� ,(: = 7~�� , & = −�V: � 4�e. �         (41) 

By substituting values of above constants in Eq. (24), we 

have 

� = −6�( AG�GC: − 6�V( AG�GC − ��V: � 2e�( . 
Case I: When V: − 4e > 0, 

�� = −3� ,s678t:� /
j
klu=>?+@;Bv6wxyz{6 FDu6<E>@;Bv6wxyz{6 F

u=<E>@;Bv6wxyz{6 FDu6>?+@;Bv6wxyz{6 Fn
op

:
− ��s6D:t�� .                   (42) 

�� = −3� ,s678t:� /∬
j
klu=>?+@;Bv6wxyz{6 FDu6<E>@;Bv6wxyz{6 F

u=<E>@;Bv6wxyz{6 FDu6>?+@;Bv6wxyz{6 Fn
op

:
d ̅� ̅3�) − ��s6D:t�3�6:� .            (43) 

Where	k2 and k:are arbitrary constants. 

If !2 = 0,	then solution (42) and (43) can be simplified as 

�� = −3� ,s678t:� / KP�ℎ: [4s678t3�: \ − ��s6D:t�� .                           (44) 

�� = −3� ,s678t:� /∬ KP�ℎ: [4s678t3�: \3�) d �̅ ̅ − ��s6D:t�3�6:� .                      (45) 

If !: = 0,	then solution (42) and (43) can be simplified as 

�2) = −3� ,s678t:� / �(Nℎ: [4s678t3�: \ − ��s6D:t�� .                           (46) 

�2) = −3� ,s678t:� /∬ �(Nℎ: [4s678t3�: \3�) d �̅ ̅ − ��s6D:t�3�6:� .                      (47) 

Case II: When V: − 4e < 0, 
�22 = −3� ,8t7s6:� /

j
kl7u=>?+@;Bxywv6z{6 FDu6<E>@;Bxywv6z{6 F

u=<E>@;Bxywv6z{6 FDu6>?+@;Bxywv6z{6 F n
op

:
− ��s6D:t�� .                      (48) 

�22 = −3� ,8t7s6:� /∬
j
klu=>?+@;Bxywv6z{6 FDu6<E>@;Bxywv6z{6 F

u=<E>@;Bxywv6z{6 FDu6>?+@;Bxywv6z{6 Fn
op

:
d ̅� ̅ − ��s6D:t�3�6:� .3�)                 (49) 

If !2 = 0,	then solution (48) and (49) can be simplified as 

�2: = −3� ,8t7s6:� / KP�ℎ: [48t7s63�: \ − ��s6D:t�� .                           (50) 

�2: = −3� ,8t7s6:� /∬ KP�ℎ: [48t7s63�: \3�) d ̅� ̅ − ��s6D:t�3�6:� .                      (51) 

If !: = 0,	then solution (48) and (49) can be simplified as 
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�2T � G3� ,8t7s6
:� / �(Nm: [48t7s63�

: \ G ��s6D:t�
� .                           (52) 

�2T � G3� ,8t7s6
:� /∬ �(Nm: [48t7s63�

: \3�
) d �̅ ̅ G ��s6D:t�3�6

:� .                     (53) 

Case III: When V: G 4e � 0, 

�28 � G24� u=6
��u=Du63��6 G

��s6D:t�
� .         (54) 

�28 � G24�∬ u=6
���=D�63��6

3�
) 	d d̅ ̅ G ��s6D:t�3�6

:� .   (55) 

Here in all the cases  ̅ � � G �4�e G �V:��. 

 

Figure 12. Soliton solution of �2��, ��  for !2 � 2, !: � 0.5, ( � 2.5, � �2.5, V � 4, e � 2. 

 

Figure 13. Soliton solution of �2��, ��  for !2 � 1, !: � 1.5, ( � 1.5, � �2, V � 3, e � 1. 

 

Figure 14. Soliton solution of �:��, �� for( � 1.5, � � 2, V � 3, e � 1. 

 

Figure 15. Soliton solution of �:��, �� for ( � 2.5, � � 2.5, V � 4, e � 2. 

 

Figure 16. Soliton solution of �T��, �� for ( � 2.5, � � 2.5, V � 4, e � 2. 
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Figure 17. Soliton solution of �T��, �� for ( � 0.5, � � 2, V � 3, e � 2. 

 

Figure 18. Soliton solution of �8��, �� for !2 � 1, !: � 1.5, ( � 0.5, � �2, V � 2, e � 2. 

 

Figure 19. Soliton solution of �8��, �� for !2 � 1.5, !: � 2, ( � 7.5, � �1, V � 1, e � 2. 

 

Figure 20. Soliton solution of �}��, �� for ( � 7.5, � � 1, V � 1, e � 2. 

4. Results and Discussion 

From graphical representations, we note that soliton is a 

wave which preserves its shape after it has collided with 

another wave of the same kind. By solving nonlinear evolution 

equations included foam drainage equation and fourth order 

evolution equation, we attain desired solitary wave solutions 

for different values of random parameters. The solitary wave 

moves toward right if the velocity is positive. It turns in left 

directions if the velocity is negative. The amplitudes and 

velocities are controlled by various parameters. Figures 

signify graphical representation for different values of 

parameters. Figure 1 to 11 represents periodic wave solution 

for different values of parameters ^, V	and µ. The soliton 

solutions that are shown in figure 12 to 15 and figure 17 to 20 

represents solitary wave solutions for different values of 

parameters V	and µ .	Figure 16 shows peakons solution by 

using values of parameters as	V � 4, μ � 2.	In all cases, for 

various values of parameters, we attain identical solitary wave 

solutions which obviously show that the final solution is not 

effectively based upon these parameters. So, we can choose 

arbitrary values of such parameters as input to our simulations. 

5. Conclusion 

In this paper by use of ��′ �⁄ �-expansion method, the 

more general and new exact solutions of NLEEs has been 

obtained. For this, nonlinear foam drainage equation and 

fourth order evolution equation are considered. We attain 

desired soliton solutions of various types for different values 

of parameters. It is guaranteed the accuracy of the attain 

results by backward substitution into the original equation 

with Maple software. The scheming procedure of this method 

is simplest, straight and productive. It is observed that the 

under study technique is more reliable and have minimum 

computational task, so widely applicable. In precise one can 

say this method is quite competent and much operative for 

evaluating exact solution of NLEEs. The validity of given 

algorithm is totally hold up with the help of the 
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computational work, and the graphical representations. 

Results obtained by this method are very encouraging and 

reliable for solving any other type of NLEEs. The graphical 

representations clearly indicate the solitary solutions. 
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